SET THEORY HOMEWORK 6

Due Wednesday, December 18.

Problem 1. Suppose that \mathbb{P} is a poset, $A \subset \mathbb{P}$ is a maximal antichain, $\phi(x)$ is a formula, and $\langle \tau_p \mid p \in A \rangle$ are \mathbb{P} names, such that for all $p \in A$, $p \Vdash \phi(\tau_p)$. Show that there is a \mathbb{P} name τ , such that $1_{\mathbb{P}} \Vdash \phi(\tau)$.

Problem 2. Let T be a normal Suslin tree, and let $(\mathbb{P}_T, <) = (T, >)$. Show that although \mathbb{P}_T has the countable chain condition, $\mathbb{P}_T \times \mathbb{P}_T$ does not. Hint: for every $x \in T$, pick two immediate successors p_x, q_x of x. Look at the set $\{(p_x, q_x) \mid x \in T\} \subset \mathbb{P}_T \times \mathbb{P}_T$.

Problem 3. Suppose that $\mathbb{P} * \dot{\mathbb{Q}}$ has the κ -chain condition. Show that \mathbb{P} has the κ -chain condition, and $1_{\mathbb{P}} \Vdash "\dot{\mathbb{Q}}$ has the κ -chain condition".

Remark 1. The converse is also true.

Problem 4. Let \mathbb{P} be a poset such that for every $p \in \mathbb{P}$, there are incompatible $q, r \leq p$. Suppose G is \mathbb{P} -generic. Show that $G \times G$ is not $\mathbb{P} \times \mathbb{P}$ -generic.

Problem 5. Let $S \subset \omega_1$ be a stationary set. Define $\mathbb{P} := \{p \subset S \mid p \text{ is closed and bounded}\}$, and set $p \leq q$ if p end extends q i.e. for some $\alpha, p \cap \alpha = q$.

- (1) Show that \mathbb{P} is ω -distributive, i.e. if $p \Vdash \dot{f} : \omega \to ON$, then there is some $q \leq p$ and a function g in the ground model, such that $q \Vdash \dot{f} = \check{g}$. Note that this implies that \mathbb{P} adds no countable subsets of ω_1 , and hence it preserves ω_1 .
- (2) What is the best chain condition for P? Justify your answer. Use that and the above to show that P preserves all cardinals.
- (3) Suppose that $T := S \setminus \omega_1$ is also stationary. Let G be a \mathbb{P} -generic filter. Show that in V[G], T is nonstationary.